PERVASIVE DATA MANAGEMENT

DATA MANAGEMENT IN MOBILE SYSTEMS

Prof. Fabio A. Schreiber Dipartimento di Elettronica, Informazione e Bioingegneria Politecnico di Milano

MOBILE, CONTEXT- AWARE COMPUTING

mobile 1

NETWORKS FOR MOBILITY

mobile 2

DIRECT RADIO LINKS

CELLULAR NETWORKS

□ INFRARED LINKS

DATA ACCESS **ANYWHERE** AND **ANYTIME** FOR **2.3 BILLION PEOPLE** (2011 estimate)

© Fabio A. Schreiber

MOBILE COMPUTING

mobile 3

NOMADIC COMPUTING FIXED NETWORK INFRASTRUCTURE

AD-HOC COMPUTING THE NETWORK IS TEMPORARILY ESTABLISHED ON DEMAND AMONG THE INVOLVED DEVICES

MOBILE APPLICATIONS

mobile 4

TRADITIONAL APPLICATIONS ON MOBILE DEVICES

NEW APPLICATIONS EXPLOITING THE DYNAMIC FEATURES OF THE MOBILE ENVIRONMENT TO PROVIDE CONTEXT-AWARE FEATURES

- LOCATION-BASED SERVICES AND LOCATION-DEPENDENT QUERIES
 - EMERGENCY SERVICES
 - NAVIGATION AND INFORMATION SERVICES
 - LOCATION-DEPENDENT ADVERTISING
 - TRACKING SERVICES

RELATED TECHNIQUES

mobile 5

- CONTEXT AND ARCHITECTURE
- MODEL AND MANAGE THE MOVING OBJECTS
 - MOVING OBJECTS DATABASES EXTEND THE TRADITIONAL DBMS WITH MODELS AND INDEX STRUCTURES TO EFFICIENTLY TRACK THE MOVING OBJECTS
 - DATA STREAMS PROCESS CONTINUOUS UPDATES OF OBJECTS POSITION
- QUERY PROCESSING TECHNIQUES
 MOVING / STATIC RANGE QUERIES
 NEAREST NEIGHBOUR QUERIES
 QUERIES ON LOCATION-DEPENDENT DATA
 - © Fabio A. Schreiber

PORTABLE VSDBMS TECHNOLOGICAL CONSTRAINTS

- COMPUTATIONAL POWER
 - ✓ SMALL FOOTPRINT DBMS
- ENERGY CONSUMPTION
 - ✓ LOW POWER BATTERIES
- FREQUENT DISCONNECTIONS
 - ✓ AREA COVERAGE
 - ✓ DEVICE SWITCH-OFF
 - *N*

PERSISTENT DATA STORAGE

- ✓ FLASH MEMORY TECHNOLOGIES
 - BIT/BYTE ACCESS GRANULARITY
 - BLOCK EREASE/UPDATE GRANULARITY
 - UPPER LIMIT TO ERASURE NUMBER

© Fabio A. Schreiber

CELLULAR NETWORKS

CELLULAR NETWORKS

GSM NETWORK ARCHITECTURE

© Fabio A. Schreiber

WHAT IS MOBILE

SPATIO/TEMPORAL DATABASES FOR MOBILE OBJECTS

 TRADITIONAL DATABASES FOR MOBILE DEVICES
 ON BOARD DBMS
 LOCATION-DEPENDENT DATA

MOBILITY ISSUES IN INFO SYSTEMS

- WHICH IS THE APPLICATION WORKING MODE
 - WITH RESPECT TO SPACE
 - LOCATION DEPENDENT DATA
 - LOCATION AWARE TRANSACTIONS
 - WITH RESPECT TO SPACE-TIME
 - SENSIBLE OF EXTERNAL EVENTS (ACTIVE)
 - NOMADIC ROAMING (QUASI STATIC)
 - FULL-FEATURED MOBILE (REAL-TIME)
 - QUERY ANSWERING SEMANTICS (????)
 - ^ AS OF WHERE ISSUED
 - **^ AS OF WHERE PROCESSED**
 - **^ AS OF WHERE RECEIVED**
- ACCURATE AND COHERENT SPATIO-TEMPORAL VIEW OF THE DISTRIBUTED STATE AND OF THE QoS

MOBILE DEVICES

FEATURES OF MOBILE DEVICES

- TYPE AND POWER OF THE DEVICE (smart cards, cell phones, PDAs, portable PC, ...)
- OPERATING ENVIRONMENT VARIABILITY (proprietary, intranet/internet, ...)
- NETWORK CONNECTIVITY (guided or occasional disconnections, asymmetrical link bandwidth)
- ACCURATE AND COHERENT SPATIO/TEMPORAL PERCEPTION OF SERVICE STATE AND QUALITY (QoS)
- MULTICANALITY (shape the information content for the device it is aimed at)

MOBILE SYSTEMS CONSTRAINTS

DEVICE POWER NEEDS FOR TRANSMISSION >> POWER NEEDS FOR PROCESSING

NETWORK LOW BANDWITH AND UNRELIABLE LINKS

MATERIALIZE DATA ON THE MOBILE DEVICE

MOBILE OBJECTS DATABASES

MOVING OBJECTS

HIGH UPDATE RATE

ACTIVE (FAST) OBJECTS STORED IN MAIN MEMORY (HARD RT)

INACTIVE (SLOW) OBJECTS STORED ON DISK (FIRM/SOFT RT)

MOBILE OBJECTS DATABASES

EXAMPLE APPLICATIONS

CELLULAR PHONE NETWORKS
 UPDATE THE USER POSITION (CELL)
 LOCATE A USER (CELL) TO FORWARD A CALL

 AIR TRAFFIC CONTROL DATA
 CONTINUOUSLY TRACK THE POSITION OF FACH OBJECT IN A GIVEN AREA

DATABASES FOR MOBILE DEVICES

MOBILE USERS – FIXED HOST(S)

- TRAVELLING EMPLOYEES \rightarrow CORPORATE DB
- □ MOBILE USERS \rightarrow DATA SERVICE PROVIDER
- PUBLIC BROADCASTED INFORMATION

□ MOBILE HOST(S) – FIXED USERS

WIRELESS SENSORS \rightarrow BASE STATION

- PEER-TO- PEER NETWORKS
- PORTABLE PERSONAL FOLDERS

DATABASES FOR MOBILE DEVICES

DATABASES FOR MOBILE DEVICES

WHAT IS **RESIDENT** ON THE MOBILE DEVICE

- LOCAL DATA ONLY
 - smart cards personal data
- SMALL LOCAL PERMANENT STORAGE
 - old cellular phones directories
- STORAGE AND TRANSACTION MANAGEMENT CAPABILITIES
 - smart cellular phones
 - palm and portable PCs

MOBILE DB TECHNOLOGICAL ISSUES

DISCONNECTED OPERATION

DATA SYNCHRONIZATION
FILE SYNCHRONIZERS (PRODUCTS)

MANUAL CONFLICT RESOLUTION (e.g., MS ActiveSync)

 TRANSFORMATIONAL APPROACH (RESEARCH)
 OPERATIONS AT EACH SITE ARE BROADCASTED TO OTHER SITES WHERE THEY ARE INTEGRATED AND

TRANSFORMED FOR THE LOCAL EXECUTION CONTEXT

MOBILE DB TECHNOLOGICAL ISSUES

LONG TRANSACTIONS

- PESSIMISTIC APPROACHES
 - TOO LONG DELAYS IN COMMITTING
- OPTIMISTIC APPROACHES
 - TOO LARGE DIVERGENCES AMONG LOCAL AND SERVER COPIES
- DOUBLE COMMIT (**RESEARCH**)
 - LOCAL, IN DISCONNECTED MODE
 - GLOBAL, AT RECONNECTION TIME
 - CONTRACT AND OPERATIONAL RULES FOR GOVERNING THE REINTEGRATION OF LOCALLY MODIFIED COPIES

COORDINATE-BASED QUERIES

SPATIO/TEMPORAL

Find all objects within a **given area** during a **given time interval**

TIMESLICE

Find all objects' locations within a given area at a certain time instant

NEAREST NEIGHBOUR

Find the **nearest moving object** to a given object during a **given time interval**

© Fabio A. Schreiber

TRAJECTORY-BASED QUERIES
 TOPOLOGICAL QUERIES
 ENTER, LEAVE ... A GIVEN AREA
 NAVIGATIONAL QUERIES
 AVERAGE OBJECT SPEED, COVERED DISTANCE ...

COMBINED QUERIES

- Which trajectories followed, in the next hour, the objects leaving via Ponzio 34 between 5 p.m. and 8 p.m. today
- Which is the nearest gas station at each instant during my whole trip

INDEXES

- COMPRESSION AND INDEXING TECHNIQUES FOR EFFICIENT TRACKABILITY
 - IN THE PAST (TRAJECTORIES HISTORY)
 - IN THE FUTURE (ACTUAL POSITION AND MOTION VECTOR)

A WHOLE AMAZONIA FOREST OF DIFFERENT TREE STRUCTURES HAS BEEN PROPOSED IN THE LITERATURE

NEW APPLICATION ARCHITECTURES

PEER-TO-PEER

- □ INFORMATION SOURCES COINCIDE WITH USER DEVICES
 - PURE P2P: FLAT ARCHITECTURE, NO DIFFERENCE AMONG THE NODES (Gnutella)
 - HYBRID AND MIXED P2P: FLAT ARCHITECTURE FOR DATA, CLIENT-SERVER ARCHITECTURE FOR META-DATA (Napster, eMule, BitTorrent)
 - USED FOR MULTIMEDIAL INFORMATION EXCHANGE
- CONTEXT-AWARENESS: ESSENTIAL IN SOLVING PARTNERS HETEROGENEITY
- ONTOLOGY: ESSENTIAL IN
 - INFORMATION SEARCHING
 - **FORMULATING QUERIES AGAINST UNKNOWN PARTIES**
 - RECONCILING ANSWERS FROM DIFFERENT SOURCES
- MOBILITY: NOT A NECESSARY ISSUE
- © 7abio A. Schreiber

EXAMPLES OF COMMERCIAL SYSTEMS (1)

SYSTEM NAME	PLATFORM	APPLICATION	/ DATA MODEL	CONTROL	MANAGEMENT	ACCESS PATH
AT&T Bell Labs Dalì (DataBlitz) www.bell-labs.com/project/dali	Windows 9x/NT, UNIX, Solaris	telecommunications	Mixi storage mngr direct access to data via shared memory relational API	multi-granularity locking s, x,, i, mode locking	•multi-level recovery •fuzzy checkpoints of dirty pages	•T-trees indexing •extensible hash tables
Centura RDM (Mbrane Touchpoint EC) www.centurasoft.com	a variety of RTOS	e-business, web+mobile solutions	RT DBMS library of C routines relational and network			Linked lists (one-to-many DBTG sets)
EMPRESS www.empress.com	Windows 9x/NT, UNIX, Solaris, Linux, Lynx,	RT process control network applications medical systems	distributed DBMS relational			
FastDB www.ispras.ru/~knizhnik/ fastdb.html	Windows NT, UNIX, Linux, Solaris	general applications with dominated read access pattern	MM DBMS direct data access object oriented	shadow objects	•shadow indexes •linked lists	•T-trees indexing •extensible hash tables •inverse references
Informix Cloudscape www.cloudscape.com	Windows 98/NT WinCE, Solaris, UNIX, Linux, EPOC, RTOS,	portable/palm mobile web solutions	distributed DBMS library of Java clas- ses object-relational	row- or table-level locking		B-trees indexing
POET FastObjects Navajo www.poet.com/fastobjects	Windows 9x/NT, UNIX, Linux	general RT and telecom applications	RT DBMS dynamically loadable Java modules object oriented			
Polyhedra www.polyhedra.com	Windows 9x/00/NT, UNIX, Linux, pSOS, VxWorks	complex RT applica- tions	MM RT Active DBMS client/server object-relational		•snapshots to disk •write-behind logging •duplicated DB (opt)	 •indexes •direct pointers (?)
Sleepycat Sw Berkeley DB www.sleepycat.com	Windows 9x/00/NT, UNIX, Embedix, QNX, VxWorks		small footprint transactions library of modified UNIX modules	variable granule size locking	•write-ahead logging •checkpointing	platform's native file system

SPECIALLY SUITED FOR MOBILE APPLICATIONS

© Fabio A. Schreiber

mobile 27

EXAMPLES OF COMMERCIAL SYSTEMS (2)

SYSTEM NAME	PLATFORM SUPPORT	APPLICATION AREA	ARCHITECTURE / DATA MODEL	CONCURRENCY CONTROL	RECOVERY MANAGEMENT	ACCESS PATH
Solid Embedded engine www.solidtech.com	Windows 9x/00/NT, UNIX, Linux, Solaris VxWorks,	smart telecom networks	distributed active DBMS relational	•multiversion optimistic •row-level locking	roll forward log	•modified B-trees •bonsai-trees
Sybase SQL Anywhere UltraLite (50 KB)	Windows NT/XP WinCE, UNIX, Linux EPOC, VxWorks,	mobile business applications	MM DBMS relational	centralized conflict resolution	checkpoints and logs	B*-trees
Times Ten www.timesten.com	Windows 2000/NT, UNIX, Linux, Lynx	Internet application servers, mobile business applications	MM (RT) DBMS applications linkable libraries relational	row-, table-, db-level locking	•checkpoints and logs •data replication	•T-trees indexing •hash tables
VTT Inform. Technology RapidBase www.vtt.fi/tte/projects/rapid	Windows 95/98/NT, UNIX, Linux	Storage/retrieval of time series data for industrial process measurement	MM, active DBMS client/server C ⁺⁺ , Java libraries relational		checkpoints and logs	
IBM DB2 Everyplace www-106.ibm.com/developerworks /library/wi-everyplace	Windows 32 /CE, Palm OS, EPOC 5, Linux, QNX Neutrino	Mobile and embedded devices, special purpose applications	Relational database (reduced functions, 137k footprint)	Synchronization server among different platforms		Advanced indexing
Oracle9i Lite www.oracle.com/ip/deploy/ias/mobile/	Windows 32, Windows CE, Palm OS, EPOC 5	General purpose mobile and location- aware applications	Lightweight relational dabase	Two-way synchronization between the server and the mobile devices		

SPECIALLY SUITED FOR MOBILE APPLICATIONS

MOST RECENT ISSUES: BIG DATA

THE CAP THEOREM

ANY NETWORKED SHARED-DATA SYSTEM CAN HAVE AT MOST TWO OUT OF THREE DESIRABLE PROPERTIES

- CONSISTENCY (C)
- HIGH AVAILABILITY (A)
- TOLERANCE TO NEWORK PARTITIONS (P)
 - PARTITION = TIME BOUND ON COMMUNICATION LATENCY
- **NoSQL** DATABASES
 - SUPPORT FLEXIBLE SCHEMA (e.g.: Key Value tables)
 - SCALE HORIZONTALLY
 - DO NOT SUPPORT ACID PROPERTIES
 - UPDATES PERFORMED ASYNCHRONOUSLY
 - POTENTIAL DATA INCONSISTENCY RESOLVED BY READERS

© Fabio A. Schreiber

HOMEWORK DEEPENING TOPICS 3

□ INDEXING OBJECTS IN MOBILE DATABASES

TRANSACTION MANAGEMENT IN MOBILE DATABASES (COMMIT, UPDATE, SYNCHRONIZE)

QUERY PROCESSING IN MOBILE DATABASES

□ P2P DATA MANAGEMENT IN MOBILE DATABASES